Dear Mr. Gallo, Ms. Wittenberg, and Mr. LaMacchia:

Whole Foods Market® has demonstrated that a retail food store can simultaneously support high quality products, environmental stewardship, and respectful treatment of employees. In fact, these goals are published as some of your company’s core values. To this end, it seems that the upcoming decision to ban the sale of conventionally grown produce and flowers where municipal biosolids have been used instead of synthetic fertilizers is directly counter to your company’s values.

Scientists, including the signers of this letter, have researched the use of biosolids for well over four decades. Much of the initial work on this topic focused on whether this product was safe for people and the environment. An overwhelming consensus emerged that use of biosolids as a soil amendment is not only safe, it is beneficial. This consensus has been further confirmed through thousands of peer reviewed publications as well as two reviews by the National Academy of Science.

With this consensus achieved, research is now focused on how best to use this material which each of us helps to produce. Research has shown that land application of biosolids helps us fight climate change by reducing demand for fossil fuel-based fertilizers and increasing soil carbon stores. Long-term studies have also shown that biosolids improve soil tilth and microbial populations, can reduce irrigation water demand, and increase crop yields.

While there is wide consensus on the safety and benefits of biosolids used as a soil amendment, there are some that deny this consensus and promote antiquated science or misinformation. For example, there have been accusations that biosolids have high concentrations of heavy metals. Prior to the passage of the Clean Water Act in 1972, some heavy metals in biosolids were higher than we now find acceptable; industries subsequently became regulated and metals concentrations in sewage decreased by one to two orders of magnitude. Today metals concentrations in biosolids are similar to what we find in animal manure and yard waste composts. Moreover, intensive study of
the bioavailability of metals in biosolids has shown that this product can actually reduce toxic metal availability in contaminated soil. As a result of this work, use of biosolids is encouraged by the United State Environmental Protection Agency (EPA) as a way to make soils safer in areas ranging from urban gardens to Superfund sites.

Research on biosolids continues, now with a focus on the potential environmental and health impacts of daily household products and pharmaceuticals. When detected, these compounds are found in biosolids at concentrations several orders of magnitude lower than in those products themselves. Thus far research suggests that biosolids are not a significant exposure pathway to these compounds. Exposure to these chemicals is much greater through household use than through crops or soils.

We would be happy to provide additional information on the research that has been conducted and is ongoing. Additional resources reviewing biosolids as a soil amendment include the EPA (www.epa.gov/owm) and the two National Academy of Sciences reviews, which were conducted in 1996 and 2002 (http://www.casaweb.org/documents/2014/use-of-reclaimed-water-sludge-in-food-production.pdf; http://water.epa.gov/scitech/wastetech/biosolids/upload/2009_04_23_biosolids_nas_complete.pdf). As scientists, we would encourage you to make a decision on whether to sell products grown in biosolids-amended soils using the latest information rather than respond to pressure from individuals that deny the scientific consensus. From our perspective, crops grown in biosolids-amended soils are well in line with the core values of your company.

Sincerely,

Sally Brown, Ph.D.
U.S. National Committee for Soil Science
Research Associate Professor
University of Washington
203 Bloedel Hall
Seattle, Washington 98195-2100
206-755-1396

Nicholas Basta, Ph.D.
Fellow, Soil Science Society of America,
Agronomy Society of America
Professor of Soil and Environmental Chemistry
The Ohio State University

Craig Cogger, Ph.D.
Extension Soil Scientist
Washington State University