Food Waste Digestion Pilot Project at Goleta Sanitary District

CASA / CWEA

Innovative Technology Seminars

Oakland, CA – September 11, 2019
Los Angeles, CA – September 17, 2019

Steve Wagner, PE – Goleta Sanitary District
Jim Dunbar, PE – Lystek International Ltd
Agenda

- Project Background
- Project Overview
- Equipment Overview
- Preliminary Results
Project Background

California must divert 20 million tons of organic waste by 2025

1. Waste reduction
2. Build new anaerobic digestion facilities, standalone or on-farm
3. Leverage existing excess anaerobic digestion capacity at water resource recovery facilities (WRRF)
4. Build new compost facilities
Co-Digestion at WRRF

Benefits

- Existing infrastructure with excess capacity
- Increased biogas production
- Onsite expertise
- Tipping fees

Challenges

- Contaminants (clogging, toxicity...)
- Grit buildup
- Odor management
- Permitting
- Clogging (FOG, struvite, contaminants...)
- Increased solids production
- Minimize transport
Project Funding

California Energy Commission

Electric Program Investment Charge (EPIC) Program

Group 3: Demonstrate and Evaluate Environmentally and Economically Sustainable Food Waste Biomass-to-Electricity Systems

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Commission Funds</td>
<td>US$1.6M</td>
</tr>
<tr>
<td>Lystek Match Funds</td>
<td>US$1.5M</td>
</tr>
<tr>
<td>Total</td>
<td>US$3.1M</td>
</tr>
</tbody>
</table>
Project Timeline

• **Project Preparation**
 - Site use agreement
 - Equipment fabrication and purchase agreements
 - Permitting (CEQA, LUP & Air Permit)
 - May 2018
 - June 2018
 - Nov 2018 (CEQA) and May 2019 (ATC)

• **Design and Construction**
 - Engineering & Procurement
 - Fabrication
 - Shipping
 - Field installation
 - Commissioning and startup
 - July-August 2018
 - September-December 2018
 - March-April 2019
 - June-July 2019
 - **July-September 2019**

• **Operations, Data Collection and Analysis**
 - 2019-2020
Project Location

Source-separated food waste from Dining Commons at UC Santa Barbara

1 mile

Pilot Project at Goleta Sanitary District
System Overview

SSO Receiving Pit

Depackaging

Boiler

Thermal Hydrolysis Reactor

Final Product Storage Tank

Centrifuge

Small Agitated Feed Tank

Two 8 m³ Anaerobic Digesters

Digestate Holding Tank

Flare
Depackaging

Hammermill system with screen

FEEDSTOCK
Food waste from UCSB

REJECTS
Inorganic packaging materials, etc.

PRODUCT
Clean organic slurry 15-30% solids <1% contamination
First SSO Delivery (6 tons)

August 27, 2019

Lessons learned:
• Large load
• Plastic bags challenge
• Slurry at 18% TS

About 1.5 tons of SSO processed and fed to the digesters over 1 week.
Second SSO Delivery (2 tons)

~50% contamination in incoming load

After manual sorting

September 3, 2019
Preliminary Results

Food waste slurry produced by Smicon depackaging unit

<table>
<thead>
<tr>
<th></th>
<th>TS</th>
<th>TVS</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test run</td>
<td>12%</td>
<td>9.6%</td>
<td>2,100 mg/kg</td>
</tr>
<tr>
<td>1st load</td>
<td>19%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd load</td>
<td>11%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TS: Total Solid, TVS: Total Volatile Solid, TN: Total Nitrogen

Food waste slurry in the feed tank
Anaerobic Digesters

- Two 8-m³ mesophilic anaerobic digesters

Objectives:

- Stable digester operation with at least 65% VS reduction
- Biogas production with steady >60% methane concentration
- Higher biogas yield per ton of incoming feedstock than current biogas production at GSD
Preliminary Results

Anaerobic Digestion

• Digesters seeded with GSD sludge on 8/26/2019
• Food waste slurry addition started 8/27/2019

• Loading rate per digester:
 ➢ Week 1: 0.35-0.5 gal/hr (~20 lb COD/d)
 ➢ Week 2: 0.9 gal/hr (~33 lb COD/d)

The digesters are in good health:
 ➢ pH 6.9 - 7.1
 ➢ T 98.5 F (37°C)
 ➢ H₂S 50 ppm
 ➢ Biogas Evidence of biogas production but no flow meter reading yet (expect 0.1 cfm per digester)
Thermal Hydrolysis (THP)

THP Reactor
- Volume = 1.5 m3
 - High-speed shearing
 - Alkali addition (pH = 9.5)
 - Low T & low P steam

As a Pre-Digestion Step or with Recirculation to AD
- Increased VS destruction
- Increased biogas yield

As a Post-Digestion Step
- Nutrient-rich biofertilizer
- Homogeneous & fully pumpable liquid
- High solids (15-17% TS)
- Class A with unrestricted use (pathogen-free)
Potential Issues and Solutions

- **Very contaminated loads** (~50%) (large plastic bags, bags in bags)
- **Food waste degrades quickly.** Acidification and loss of organic matter during storage pre-digestion.
- **VFA accumulation and pH drop**
- **Ammonia buildup and inhibition**
- **Heavy metals toxicity**
- **Foaming**
- **Bag opening / sorting prior to processing**
- **Process food waste within 2 or 3 days after receiving**
- **Monitor 6.8 < pH < 7.2**
- **Monitor VFA/Alkalinity ratio < 0.4**
- **Provision for sodium carbonate and bicarbonate addition to digesters**
- **Measure total nitrogen in incoming food waste to help predict ammonia generation in digester**
- **Monitor ammonia concentration in digester < 1500-2000 mg/L**
- **Monitor heavy metals concentrations in digester**
- **Provision for antifoam addition**

- **Heavy metals toxicity** (~50%) (large plastic bags, bags in bags)
- **Bag opening / sorting prior to processing**
- **Process food waste within 2 or 3 days after receiving**
- **Monitor 6.8 < pH < 7.2**
- **Monitor VFA/Alkalinity ratio < 0.4**
- **Provision for sodium carbonate and bicarbonate addition to digesters**
- **Measure total nitrogen in incoming food waste to help predict ammonia generation in digester**
- **Monitor ammonia concentration in digester < 1500-2000 mg/L**
- **Monitor heavy metals concentrations in digester**
- **Provision for antifoam addition**
Thank you!

Questions?